Discrepancy estimates for variance bounding Markov chain quasi-Monte Carlo

نویسندگان

  • Josef Dick
  • Daniel Rudolf
چکیده

Markov chain Monte Carlo (MCMC) simulations are modeled as driven by true random numbers. We consider variance bounding Markov chains driven by a deterministic sequence of numbers. The star-discrepancy provides a measure of efficiency of such Markov chain quasi-Monte Carlo methods. We define a pull-back discrepancy of the driver sequence and state a close relation to the star-discrepancy of the Markov chain-quasi Monte Carlo samples. We prove that there exists a deterministic driver sequence such that the discrepancies decrease almost with the Monte Carlo rate n−1/2. As for MCMC simulations, a burn-in period can also be taken into account for Markov chain quasi-Monte Carlo to reduce the influence of the initial state. In particular, our discrepancy bound leads to an estimate of the error for the computation of expectations. To illustrate our theory we provide an example for the Metropolis algorithm based on a ball walk. Furthermore, under additional assumptions we prove the existence of a driver sequence such that the discrepancy of the corresponding deterministic Markov chain sample decreases with order n−1+δ for every δ > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on "On the use of low discrepancy sequences in Monte Carlo methods"

Quasi-random (or low discrepancy) sequences are sequences for which the convergence to the uniform distribution on [0; 1)s occurs rapidly. Such sequences are used in quasi-Monte Carlo methods for which the convergence speed, with respect to the N first terms of the sequence, is in O(N 1(lnN)s), where s is the mathematical dimension of the problem considered. The disadvantage of these methods is...

متن کامل

Quasi-Monte Carlo Methods in Computer Graphics, Part II: The Radiance Equation

The radiance equation, which describes the global illumination problem in computer graphics, is a high dimensional integral equation. Estimates of the solution are usually computed on the basis of Monte Carlo methods. In this paper we propose and investigate quasi-Monte Carlo methods, which means that we replace (pseudo-) random samples by low discrepancy sequences, yielding deterministic algor...

متن کامل

Quasi-Monte Carlo methods with applications in finance

We review the basic principles of quasi-Monte Carlo (QMC) methods, the randomizations that turn them into variance-reduction techniques, the integration error and variance bounds obtained in terms of QMC point set discrepancy and variation of the integrand, and the main classes of point set constructions: lattice rules, digital nets, and permutations in different bases. QMC methods are designed...

متن کامل

A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains

We introduce and study a randomized quasi-Monte Carlo method for estimating the state distribution at each step of a Markov chain. The number of steps in the chain can be random and unbounded. The method simulates n copies of the chain in parallel, using a (d + 1)-dimensional highly-uniform point set of cardinality n, randomized independently at each step, where d is the number of uniform rando...

متن کامل

Low Discrepancy Constructions in the Triangle

Most quasi-Monte Carlo research focuses on sampling from the unit cube. Many problems, especially in computer graphics, are defined via quadrature over the unit triangle. Quasi-Monte Carlo methods for the triangle have been developed by Pillards and Cools (2005) and by Brandolini et al. (2013). This paper presents two QMC constructions in the triangle with a vanishing discrepancy. The first is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014